Avidity-controlled delivery of angiogenic peptides from injectable molecular-recognition hydrogels.

نویسندگان

  • Widya Mulyasasmita
  • Lei Cai
  • Yuki Hori
  • Sarah C Heilshorn
چکیده

Peptide mimics of growth factors represent an emerging class of therapeutic drugs due to high biological specificity and relative ease of synthesis. However, maintaining efficacious therapeutic dosage at the therapy site has proven challenging owing to poor intestinal permeability and short circulating half-lives in the blood stream. In this work, we present the affinity immobilization and controlled release of QK, a vascular endothelial growth factor (VEGF) mimetic peptide, from an injectable mixing-induced two-component hydrogel (MITCH). The MITCH system is crosslinked by reversible interactions between WW domains and complementary proline-rich peptide modules. Fusion of the QK peptide to either one or two units of the proline-rich sequence creates bifunctional peptide conjugates capable of specific binding to MITCH while preserving their angiogenic bioactivity. Presenting two repeats of the proline-rich sequence increases the binding enthalpy 2.5 times due to avidity effects. Mixing of the drug conjugates with MITCH components results in drug encapsulation and extended release at rates consistent with the affinity immobilization strength. Human umbilical vein endothelial cells (HUVECs) treated with the soluble drug conjugates exhibit morphogenetic events of VEGF receptor 2 signal transduction followed by cell migration and organization into networks characteristic of early angiogenesis. In a three-dimensional model where HUVECs were cultured as spheroids in a matrix of collagen and fibronectin, injection of drug-releasing MITCH resulted in significantly more cell outgrowth than drugs injected in saline. This ability to sustain local drug availability is ideal for therapeutic angiogenesis applications, where spatiotemporal control over drug distribution is a key requirement for clinical success.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injectable Hydrogels: A Review of Injectability Mechanisms and Biomedical Applications

Hydrogels have been used for biomedical applications in recent decades. They are a perfect candidate for regenerative medicine as they resemble the extracellular matrix of native tissues. In addition, their highly hydrated structure makes them a suitable choice for drug and other therapeutics delivery. Injectable hydrogels have increasingly gained attention due to their capability for homogeneo...

متن کامل

Regulating Stem Cell Secretome Using Injectable Hydrogels with In Situ Network Formation.

A family of shear-thinning hydrogels for injectable encapsulation and long-term delivery (SHIELD) has been designed and synthesized with controlled in situ stiffening properties to regulate the stem cell secretome. The authors demonstrate that SHIELD with an intermediate stiffness (200-400 Pa) could significantly promote the angiogenic potential of human adipose-derived stem cells.

متن کامل

Pretreatment of Mesenchymal Stem Cells and Stromal-derived Factor-1α Delivery from Chitosan-based Injectable Hydrogels for Better Cell Guidance and Retention

Clinical applications of mesenchymal stem cells (MSCs) rely on their capacity to home and engraft in the appropriate target tissues for a long time. Homing and engraftment capacity of these stem cells depend on the expression of Chemokines and their receptors. Ex vivo expanded MSCs exhibit homing potential when grafted to injury tissue but their homing efficiency has been observed very poor bec...

متن کامل

Injectable alginate hydrogel for enhanced spatiotemporal control of lentivector delivery in murine skeletal muscle.

Hydrogels are an especially appealing class of biomaterials for gene delivery vehicles as they can be introduced into the body with minimally invasive procedures and are often applied in tissue engineering and regenerative medicine strategies. In this study, we show for the first time the use of an injectable alginate hydrogel for controlled delivery of lentivectors in the skeletal muscle of mu...

متن کامل

Avidity-controlled hydrogels for injectable co-delivery of induced pluripotent stem cell-derived endothelial cells and growth factors.

To translate recent advances in induced pluripotent stem cell biology to clinical regenerative medicine therapies, new strategies to control the co-delivery of cells and growth factors are needed. Building on our previous work designing Mixing-Induced Two-Component Hydrogels (MITCHs) from engineered proteins, here we develop protein-polyethylene glycol (PEG) hybrid hydrogels, MITCH-PEG, which f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Tissue engineering. Part A

دوره 20 15-16  شماره 

صفحات  -

تاریخ انتشار 2014